Глава 4. Генетика эндокринных болезней
Р. Фок
Цитогенетика
Предмет цитогенетики — исследование нормального хромосомного набора и хромосомных аномалий, лежащих в основе наследственных болезней.
I. Хромосомные аномалии. Нормальный хромосомный набор человека включает 46 хромосом, в том числе 22 пары аутосом и 1 пару половых хромосом XX или XY. Частота хромосомных аномалий у детей, родившихся живыми, составляет 0,7%; у мертворожденных плодов — 5%; при ранних самопроизвольных абортах — 50%. Известно множество хромосомных аномалий, в том числе — связанных с эндокринными болезнями (см. табл. 4.1). Основные типы аномалий:
А. Численные изменения хромосомного набора.
Б. Структурные изменения (аберрации) отдельных хромосом.
Аномалии могут затрагивать как аутосомы, так и половые хромосомы. Если хромосомная аномалия присутствует в половой клетке, то все клетки будущего организма наследуют эту аномалию (что приводит к развитию полной формы наследственной болезни). Хромосомные аномалии могут возникать и в соматических клетках, особенно на ранних стадиях эмбриогенеза. В таких случаях только часть клеток организма имеет хромосомную аномалию (хромосомный мозаицизм). Часто встречается мозаицизм по половым хромосомам.
Для унификации цитогенетических исследований разработана Международная цитогенетическая номенклатура хромосом человека (ISCN, 1978), основанная на дифференциальном окрашивании хромосом по длине. Эта номенклатура позволяет подробно описать каждую хромосому: ее порядковый номер, плечо (p — короткое плечо, q — длинное плечо), район, полосу и даже субполосу. Например, 2p12 обозначает 2-ю хромосому, короткое плечо, район 1, полосу 2.
II. Дифференциальное окрашивание хромосом. Разработан ряд методов окрашивания (бэндинга), позволяющих выявить комплекс поперечных меток (полос, бэндов) на хромосоме. Каждая хромосома характеризуется специфическим комплексом полос. Гомологичные хромосомы окрашиваются идентично, за исключением полиморфных районов, где локализуются разные аллельные варианты генов. Аллельный полиморфизм характерен для многих генов и встречается в большинстве популяций. Выявление полиморфизмов на цитогенетическом уровне не имеет диагностического значения.
А. Q-окрашивание. Первый метод дифференциального окрашивания хромосом был разработан шведским цитологом Касперссоном, использовавшим с этой целью флюоресцентный краситель акрихин-иприт. Под люминесцентным микроскопом на хромосомах видны участки с неодинаковой интенсивностью флюоресценции — Q-сегменты. Метод лучше всего подходит для исследования Y-хромосом и потому используется для быстрого определения генетического пола, выявления транслокаций (обменов участками) между X- и Y-хромосомами или между Y-хромосомой и аутосомами, а также для просмотра большого числа клеток, когда необходимо выяснить, имеется ли у больного с мозаицизмом по половым хромосомам клон клеток, несущих Y-хромосому.
Б. G-окрашивание. После интенсивной предварительной обработки, часто с применением трипсина, хромосомы окрашивают красителем Гимзы. Под световым микроскопом на хромосомах видны светлые и темные полосы — G-сегменты. Хотя расположение Q-сегментов соответствует расположению G-сегментов, G-окрашивание оказалось более чувствительным и заняло место Q-окрашивания в качестве стандартного метода цитогенетического анализа. G-окрашивание дает наилучшие результаты при выявлении небольших аберраций и маркерных хромосом (сегментированных иначе, чем нормальные гомологичные хромосомы).
В. R-окрашивание дает картину, противоположную G-окрашиванию. Обычно используют краситель Гимзы или флюоресцентный краситель акридиновый оранжевый. Этим методом выявляют различия в окрашивании гомологичных G- или Q-негативных участков сестринских хроматид или гомологичных хромосом.
Г. C-окрашивание используют для анализа центромерных районов хромосом (эти районы содержат конститутивный гетерохроматин) и вариабельной, ярко флюоресцирующей дистальной части Y-хромосомы.
Д. T-окрашивание применяют для анализа теломерных районов хромосом. Эту методику, а также окрашивание районов ядрышковых организаторов азотнокислым серебром (AgNOR-окрашивание) используют для уточнения результатов, полученных путем стандартного окрашивания хромосом.
III. Цитогенетические исследования in vitro. Информативность этих исследований зависит от типа клеток, состава культуральной среды, продолжительности культивирования клеток, а также от применения добавок, синхронизирующих клеточный цикл или подавляющих метаболизм.
А. Метафазный анализ. Чаще всего используют 72-часовые культуры лимфоцитов, стимулированных фитогемагглютинином. На правильно приготовленном препарате метафазной пластинки должно быть видно не менее 500—550 полос в расчете на гаплоидный набор хромосом. Если результат нужно получить быстрее, исследуют 48-часовую культуру лимфоцитов или свежий препарат клеток костного мозга. Указанные методы позволяют обнаружить численные нарушения кариотипа, но их чувствительность недостаточна для анализа небольших аберраций.
Б. Профазный анализ. Путем синхронизации клеточного цикла и применения ингибиторов синтеза веретена деления можно блокировать митоз на стадиях поздней профазы или прометафазы. На этих стадиях хромосомы спирализованы не полностью и на них видно гораздо больше полос, чем на метафазных хромосомах (более 800 полос на гаплоидный набор). Методика очень чувствительна, но сложна, поэтому ее используют только для детального анализа аномалий, предварительно выявленных более простыми методами.
В. Другие методы
1. Культивирование клеток в присутствии кластогенных веществ для исследования разрывов и реагрегации хромосом.
2. Культивирование в среде с недостатком фолиевой кислоты для выявления участков ломкости хромосом.
3. Культивирование фибробластов кожи или клеток других органов для выявления аномалий половых хромосом.
IV. Молекулярная цитогенетика. Это группа методов анализа хромосом с применением молекулярных зондов.
А. Флюоресцентная гибридизация in situ. Зондами служат меченные флюоресцентными красителями олигонуклеотиды, комплементарные повторяющимся последовательностям ДНК. Эти зонды гибридизуются с интерфазными или метафазными хромосомами. Под люминесцентным микроскопом на препаратах интерфазных клеток или метафазных пластинок видны яркие флюоресцирующие пятна. Метод чаще всего применяют для быстрого установления пола, выявления трисомии и других типов анеуплоидии в интерфазных клетках, а также для цитогенетического анализа опухолевых клеток.
Б. Раскрашивание хромосом. Для детального анализа какой-либо одной хромосомы используют набор флюоресцентных олигонуклеотидных зондов, комплементарных разным нуклеотидным последовательностям этой хромосомы. Зонды «раскрашивают» нужную хромосому независимо от ее положения в клетке или структурной целостности. Таким путем выясняют происхождение маркерных хромосом и малых дупликаций.
В. Малокопийные зонды. Зонд, комплементарный уникальной последовательности ДНК, может быть использован для обнаружения известной мутации, связанной с определенным фенотипом (с целью уточнения диагноза). Методика дает хорошие результаты при выявлении субмикроскопических делеций. Такие делеции описаны при синдромах Прадера—Вилли и Ди Джорджи. Применяют флюоресцентные, меченные радиоактивным изотопом или биотинилированные зонды.
Наследственные болезни
Принято различать хромосомные, моногенные и полигенные (мультифакториальные) наследственные болезни.
V. Хромосомные болезни
А. Аномалии аутосом. Моносомия по любой из аутосом обычно приводит к внутриутробной гибели плода. Моносомия — самый частый вариант хромосомной аномалии при самопроизвольных абортах. Трисомии по аутосомам характеризуются меньшей летальностью, но вызывают тяжелейшие пороки развития у детей, родившихся живыми. У больных с мозаицизмом клиническая картина менее выражена, а выживаемость выше, чем при полной форме трисомии. С помощью дифференциального окрашивания хромосом было установлено, что численные изменения в системе аутосом часто сопровождаются небольшими делециями и дупликациями. Если у пробанда обнаружены численные или структурные аномалии хромосом, исследуют кариотип родителей для исключения сбалансированных перестроек (это необходимо для определения повторного риска рождения больного ребенка).
1. Синдром Дауна. Генетические дефекты, лежащие в основе синдрома Дауна, — самая частая причина врожденных пороков развития и умственной отсталости. Распространенность синдрома Дауна велика: он обнаруживается у 1 из 670 новорожденных. Примерно в 94% случаев синдром обусловлен трисомией по 21-й хромосоме. У 3% больных наблюдается мозаицизм. В остальных случаях синдром вызван спорадической или наследуемой транслокацией 21-й хромосомы. Как правило, такие транслокации возникают в результате слияния центромеры 21-й хромосомы и другой акроцентрической хромосомы. Фенотип больных определяется трисомией 21q22. Повторный риск рождения ребенка с синдромом Дауна у родителей с нормальным кариотипом составляет около 1%. Повторный риск у лиц с мозаицизмом и носителей сбалансированной транслокации существенно выше. Пожилой возраст матери — единственный фактор риска, для которого четко установлена связь с синдромом Дауна. Эндокринные нарушения: первичный гипогонадизм (у больных мужского пола — в 100% случаев), врожденный первичный гипотиреоз (вследствие дисгенезии щитовидной железы), приобретенный первичный гипотиреоз, тиреотоксикоз.
2. Трисомия по 18-й хромосоме (синдром Эдвардса) встречается у новорожденных с частотой от 1:3300 до 1:10 000; у девочек бывает в 3 раза чаще, чем у мальчиков. Больные дети часто рождаются недоношенными или переношенными. Нарушения при трисомии по 18-й хромосоме гораздо тяжелее, чем при синдроме Дауна; лишь 50% пробандов доживают до 2-месячного возраста; 10% живут 1 год. Средняя продолжительность жизни мальчиков — 60, девочек — 280 дней. Клиническая картина: череп необычной формы (узкий лоб и широкий выступающий затылок), низкое расположение ушей, микрогнатия, сгибательная контрактура кистей и стоп, дисплазия стоп, пороки сердца, сильная задержка психического развития. Главные нарушения обмена веществ и эндокринные расстройства: гипоплазия подкожной клетчатки, сильная задержка роста. Дисгенезия щитовидной железы или надпочечников встречается менее чем у 10% больных.
3. Трисомия по 13-й хромосоме (синдром Патау) обнаруживается у новорожденных с частотой около 1:5000 и связана с широким спектром пороков развития. Наиболее распространенные дефекты: микрофтальмия или анофтальмия, расщелины верхней губы и твердого неба, наличие непарной резцовой кости, голопрозэнцефалия. Эндокринные нарушения: гипопитуитаризм, гетеротопия поджелудочной железы, гипоплазия наружных половых органов.
4. Риск эндокринных заболеваний повышен и при других численных и структурных аномалиях аутосом, таких, как триплоидия (модальное число хромосом 69), синдром Вольфа—Хиршхорна (делеция 4p) и делеция короткого плеча 18-й хромосомы. Детально изучены синдромы, обусловленные небольшими делециями, для выявления которых применяют высокоразрешающие цитогенетические методы или методы молекулярной генетики. Эта группа болезней включает:
а. Синдром Прадера—Вилли. Клиническая картина: мышечная гипотония, ожирение, непропорционально маленькие стопы и кисти, вторичный гипогонадизм. Примерно у половины больных обнаружены делеции 15q11—13.
б. МЭН типа IIa (см. также гл. 45). Семейное заболевание с аутосомно-доминантным наследованием. Клиническая картина: медуллярный рак щитовидной железы, феохромоцитома, иногда — гиперпаратиреоз или другие аномалии паращитовидных желез. В нескольких семьях обнаружена небольшая интерстициальная делеция 20р.
в. Синдром Ди Джорджи. Клиническая картина: аплазия или дисгенезия паращитовидных желез, аплазия тимуса, пороки дуги аорты. Наиболее вероятная причина: небольшая делеция 22q11.2.
г. Синдром WAGR — нефробластома, аниридия, гипогонадизм, умственная отсталость. У некоторых больных с этим синдромом обнаружена делеция 11p13. Клиническая картина: умственная отсталость, нарушения половой дифференцировки (наружные половые органы промежуточного типа), тяжевидные гонады, первичный гипогонадизм, гонадобластома. В области 11p13 картируется локус нефробластомы. Обнаружена мутация этого локуса и у больных с синдромом Дрэша (чистая дисгенезия гонад 46,XY, поражение почечных клубочков, нефробластома). Для дифференциальной диагностики требуется высокоразрешающий цитогенетический анализ. Если клиническая картина соответствует одному из синдромов, но при цитогенетическом анализе хромосомные аномалии не обнаружены, необходимо провести молекулярно-генетическое исследование.
Б. Аномалии половых хромосом. Численные нарушения в системе половых хромосом (моносомия и трисомия) не вызывают таких тяжелых последствий, как аутосомные аномалии. Ярко выраженные изменения фенотипа немногочисленны или вообще отсутствуют (например, у женщин с кариотипом 47,XXX). В предварительной диагностике болезней, обусловленных аномалиями половых хромосом, основное значение имеет анамнез: задержка полового развития, нарушение формирования вторичных половых признаков, бесплодие, самопроизвольные аборты. Экспресс-методы цитогенетического анализа (например, определение полового хроматина в соскобе со слизистой щек) не всегда дают надежные результаты. Поэтому при подозрении на аномалию половых хромосом требуется детальное цитогенетическое исследование большого числа клеток. Одна из основных задач такого исследования — исключение мозаицизма при дисгенезии гонад. Наличие у больного с мозаицизмом клона клеток, несущих Y-хромосому, свидетельствует о повышенном риске гонадобластомы. В тех случаях, когда вероятность аномалии половых хромосом высока, но в лимфоцитах аномалия не обнаружена, нужно исследовать клетки других тканей (обычно фибробласты кожи).
1. Синдром Тернера — это клиническое проявление аномалии одной из X-хромосом у женщин. Синдром Тернера в 60% случаев обусловлен моносомией X-хромосомы (кариотип 45,X), в 20% случаев — мозаицизмом (например, 45,X/46,XX) и в 20% случаев — аберрацией одной из X-хромосом (например, 46,X[delXp–]). Распространенность синдрома Тернера, обусловленного полной моносомией X-хромосомы (45,X), среди детей, родившихся живыми, составляет 1:5000 (у девочек 1:2500). Плоды с кариотипом 45,X спонтанно абортируются в 98% случаев. Синдром характеризуется множественными пороками развития скелета и внутренних органов. Важнейшие фенотипические признаки: низкорослость и дисгенезия или полное отсутствие гонад (на месте яичников находят недифференцированные соединительнотканные тяжи, не содержащие половых клеток и фолликулов). Другие признаки: короткая шея с крыловидными кожными складками, низкая линия роста волос на затылке, бочкообразная грудная клетка, нарушение пропорций лица, О-образное искривление рук (деформация локтевых суставов), X-образное искривление ног.
а. Цитогенетические варианты синдрома. У больных с кариотипом 45,X обычно отсутствует отцовская X-хромосома; возраст матери не является фактором риска. Кариотип 45,X в большей части случаев обусловлен нерасхождением половых хромосом в 1-м делении мейоза (в результате в зиготу попадает только одна X-хромосома), реже — нарушениями митоза на ранних стадиях дробления зиготы. У больных с мозаицизмом встречаются клоны клеток, содержащих две X-хромосомы (45,X/46,XX), X- и Y-хромосомы (45,X/46,XY) либо клоны с полисомией X-хромосомы (например, 45,X/47,XXX). Иногда наблюдаются транслокации между X-хромосомой и аутосомами. Транслокации и наличие дополнительных клеточных линий у больных с мозаицизмом сильно влияют на формирование фенотипа. Если имеется клон клеток, несущих Y-хромосому, то в зачатках половых желез с одной или с обеих сторон может присутствовать гормонально-активная ткань яичек; наблюдаются наружные половые органы промежуточного типа (от гипертрофированного клитора до почти нормального полового члена). Возможные аберрации X-хромосомы при синдроме Тернера: изохромосома по длинному плечу [i(Xq)], в редких случаях изохромосома по короткому плечу [i(Xp)]; концевая делеция длинного плеча [del(Xq–)] или делеция всего длинного плеча (Xq–), концевая делеция короткого плеча [del(Xp)] или делеция всего короткого плеча (Хр–); концевая перестройка X-хромосомы [46,X,ter rea(X;X)]; кольцевая X-хромосома [46X,r(X)]. Если аберрантная X-хромосома инактивируется, аберрация может вообще не проявляться в фенотипе или проявляется не полностью. В последнем случае аберрация частично компенсируется присутствием нормальной X-хромосомы (эффект дозы гена). Аберрации X-хромосомы нередко сочетаются с мозаицизмом, т. е. с наличием клона клеток 45,X [например, 45,X/46X,i(Xp)]. При транслокации между X-хромосомой и аутосомой кариотип может быть сбалансированным или несбалансированным. Даже если транслокация сбалансирована, частота пороков развития или умственной отсталости повышена. Нормальная X-хромосома при X-аутосомной транслокации обычно инактивируется. В редких случаях у больных с синдромом Тернера (в том числе у больных с мозаицизмом с клоном клеток 45,X) выявляется аберрантная Y-хромосома. Повторный риск рождения ребенка с синдромом Тернера невелик, за исключением тех случаев, когда у одного или обоих родителей имеется наследуемая X-аутосомная транслокация или когда мать несет клон клеток 45,X.
б. Характерные признаки синдрома Тернера у новорожденных — лимфатический отек конечностей и пороки сердца (встречаются примерно у 20% больных). Пороки в 75% случаев представлены дефектами межжелудочковой перегородки или коарктацией аорты. Необходимо обследовать любую девочку или женщину с сильной задержкой роста, даже если другие признаки синдрома отсутствуют. Другие показания для обследования: задержка полового развития, изолированная задержка менархе, дисменорея, бесплодие, повторные самопроизвольные аборты (3 и более), преждевременная менопауза. Важную информацию дает определение уровня гонадотропных гормонов (особенно у девочек младшего и препубертатного возраста). Окончательный диагноз синдрома Тернера должен быть основан на данных цитогенетического анализа. Следует просматривать не менее 50 клеток.
в. Ведение больных с синдромом Тернера. Первоочередная задача — детальное обследование больных, особенно девочек младшего возраста. Цель обследования — выявление пороков сердца, расслаивания аорты, аномалий ЖКТ и почек, нарушений слуха. Может потребоваться хирургическое вмешательство. У девочек старшего возраста и у женщин часто встречаются хронический лимфоцитарный тиреоидит, хронические воспалительные заболевания кишечника и артериальная гипертония; эти заболевания требуют длительного консервативного лечения. Лечение соматропином (иногда в сочетании с анаболическими стероидами) ускоряет рост в детстве и увеличивает рост взрослых больных. Лечение соматропином можно начинать с 2 лет (но только в тех случаях, когда рост девочки меньше 5-го процентиля). Заместительную терапию низкими дозами эстрогенов начинают, как правило, после оссификации эпифизов (с 14 лет). Если больная тяжело переживает отсутствие пубертатных изменений, эстрогены назначают раньше. Даже при лечении гормонами вторичные половые признаки часто формируются не полностью. Женщины с синдромом Тернера обычно бесплодны, но в редких случаях происходит спонтанная овуляция и может наступить беременность. У некоторых больных появляются менструации и нормализуется уровень гонадотропных гормонов в отсутствие заместительной гормональной терапии. Риск пороков развития у потомства больных повышен. Женщин с синдромом Тернера предупреждают о риске самопроизвольного аборта и преждевременной менопаузы, а при подозрении на беременность предлагают провести пренатальную диагностику.
2. Трисомия по X-хромосоме (47,ХХХ) встречается у новорожденных девочек с частотой 1:1000; редко диагностируется в раннем детстве; взрослые больные обычно имеют нормальный женский фенотип.
а. Немногочисленные проспективные исследования показали, что у женщин с кариотипом 47,XXX наиболее часто отмечаются: высокий рост; умственная отсталость (как правило, легкой степени); позднее развитие речи; эпилепсия; дисменорея; бесплодие. Риск рождения ребенка с трисомией по X-хромосоме повышен у пожилых матерей. Для фертильных женщин с кариотипом 47,XXX риск рождения ребенка с таким же кариотипом невелик. По-видимому, существует защитный механизм, предотвращающий образование или выживание анеуплоидных гамет или зигот.
б. При полисомии X-хромосомы с числом X-хромосом более трех (например, 48,ХХХХ, 49,ХХХХХ) высока вероятность тяжелой умственной отсталости, нарушения пропорций лица, пороков развития скелета или внутренних органов. Синдромы такого рода встречаются редко и обычно имеют спорадический характер.
3. Синдром Клайнфельтера — это клиническое проявление полисомии по X-хромосоме у мужчин (распространенность около 1:500). Чаще всего наблюдается кариотип 47,XXY (классический вариант синдрома), но встречаются и более редкие кариотипы: 48,XXXY; 49,XXXXY; 48,XXYY; 49,XXXYY. Наличие в кариотипе не менее двух X-хромосом и одной Y-хромосомы — самая распространенная причина первичного гипогонадизма у мужчин.
а. Примерно у 10% больных с синдромом Клайнфельтера наблюдается мозаицизм 46,XY/47,XXY. Поскольку в формировании фенотипа участвует клон клеток с нормальным кариотипом, больные с мозаицизмом 46,XY/47,XXY могут иметь нормально развитые половые железы и быть фертильными. Добавочная X-хромосома в 60% случаев наследуется от матери, особенно при поздней беременности. Риск наследования отцовской X-хромосомы не зависит от возраста отца.
б. Для синдрома Клайнфельтера характерен фенотипический полиморфизм. Наиболее частые признаки: высокорослость, непропорционально длинные ноги, евнухоидное телосложение, маленькие яички (длинная ось < 2 см). Производные вольфова протока формируются нормально. В детском возрасте нарушения развития яичек незаметны и могут не выявляться даже при биопсии. Эти нарушения обнаруживают в пубертатном периоде и позднее. В типичных случаях при биопсии яичка у взрослых находят гиалиноз извитых семенных канальцев, гиперплазию клеток Лейдига, уменьшение численности или отсутствие клеток Сертоли; сперматогенез отсутствует. Больные, как правило, бесплодны (даже если есть признаки сперматогенеза). Формирование вторичных половых признаков обычно нарушено: оволосение лица и подмышечных впадин скудное или отсутствует; наблюдается гинекомастия; отложение жира и рост волос на лобке по женскому типу. Как правило, психическое развитие задерживается, но у взрослых нарушения интеллекта незначительны. Нередко встречаются нарушения поведения, эпилептическая активность на ЭЭГ, эпилептические припадки. Сопутствующие заболевания: рак молочной железы, сахарный диабет, болезни щитовидной железы, ХОЗЛ.
в. Способы лечения бесплодия при синдроме Клайнфельтера пока не разработаны. Заместительную терапию тестостероном обычно начинают с 11—14 лет; при дефиците андрогенов она существенно ускоряет формирование вторичных половых признаков. У взрослых больных на фоне лечения тестостероном повышается половое влечение. При гинекомастии может потребоваться хирургическое вмешательство. Психотерапия способствует социальной адаптации больных с синдромом Клайнфельтера и больных с другими аномалиями половых хромосом.
4. Кариотип 47,XYY. Этот вариант анеуплоидии наименее изучен, привлекает внимание врачей и возбуждает интерес широкой публики.
а. Эта хромосомная аномалия встречается у мужчин с частотой 1:800 и редко проявляется в детском возрасте. Взрослые носители кариотипа 47,XYY в большей части случаев имеют нормальный мужской фенотип. Добавочная (отцовская) Y-хромосома появляется чаще всего в результате нерасхождения хроматид во 2-м делении мейоза. Возраст отца не является фактором риска.
б. Для носителей кариотипа 47,XYY характерен высокий рост; пубертатное ускорение роста наступает раньше и продолжается дольше, чем обычно. Часто встречаются мелкие пороки развития; связь кариотипа 47,XYY с крупными пороками развития не доказана. Иногда наблюдаются изменения ЭКГ, шаровидные или абсцедирующие угри и варикозное расширение вен, однако повышенный риск возникновения этих расстройств у лиц с кариотипом 47,XYY не подтвержден. Умственное развитие в пределах нормы, но речевое развитие задерживается. Нередко подростки и мужчины с кариотипом 47,XYY очень агрессивны, склонны к преступным действиям и плохо адаптируются к жизни в обществе. У большинства развитие и функции половых желез нормальные, однако известны случаи недоразвития яичек, бесплодия или пониженной фертильности.
в. Лечение не требуется. Если кариотип 47,XYY обнаружен в ходе пренатального исследования или у ребенка в препубертатном периоде, нужно правдиво и подробно проконсультировать родителей. Взрослый мужчина, у которого впервые выявлен кариотип 47,XYY, нуждается в психологической поддержке; могут потребоваться медико-генетические консультации. Супружеским парам, в которых мужчина несет кариотип 47,XYY, рекомендуют провести пренатальную диагностику, хотя в таких семьях дети обычно имеют нормальный кариотип.
VI. Моногенные болезни
А. Общие сведения. Некоторые моногенные болезни, сопровождающиеся эндокринными нарушениями, перечислены в табл. 4.2. Эти болезни характеризуются значительным фенотипическим и генетическим полиморфизмом. Фенотипический полиморфизм обусловлен тем, что на экспрессию дефектного гена (т. е. на формирование клинической картины) влияют факторы окружающей среды и сопутствующие хромосомные или полигенные болезни. Поэтому при одном и том же генетическом дефекте возможны разные клинические варианты болезни. Генетический полиморфизм заключается в том, что одно и то же заболевание может быть обусловлено дефектами разных одиночных генов. Так, гипопитуитаризм может наследоваться аутосомно-рецессивно или рецессивно, сцепленно с X-хромосомой, а изолированный дефицит СТГ — аутосомно-рецессивно или аутосомно-доминантно. Наиболее яркие примеры генетически полиморфных болезней — инсулинозависимый и инсулинонезависимый сахарный диабет. Показано, что предрасположенность к инсулинозависимому сахарному диабету связана с дефектами генов HLA и наследуется в соответствии с законами Менделя, однако роль этих дефектов в патогенезе инсулинозависимого сахарного диабета не выяснена. Инсулинонезависимый сахарный диабет в большей части случаев наследуется аутосомно-рецессивно, но юношеский инсулинонезависимый сахарный диабет (MODY) наследуется только аутосомно-доминантно. В последнее время эндокринологи склоняются к мнению о том, что инсулинозависимый и инсулинонезависимый сахарный диабет не являются самостоятельными нозологическими единицами, а представляют собой гетерогенные группы болезней со сходной клинической картиной. Внутри каждой группы могут встречаться как моногенные, так и полигенные формы болезни с доминантным или рецессивным типом наследования.
1. Хромосомы и составляющие их гены — парные структуры. В одном и том же локусе (сублокусе) гомологичных хромосом находятся аллели одного и того же гена. Аллель — это одно из возможных структурных состояний гена. Новые аллели возникают, как правило, в результате мутаций; некоторые мутации приводят к развитию моногенных болезней. Если в гомологичных хромосомах присутствуют идентичные аллели какого-либо гена, то организм является гомозиготным по данному гену; в 1-м поколении потомков гомозиготных организмов не происходит расщепления признаков, определяемых данным геном. Если в гомологичных хромосомах присутствуют разные аллели одного гена, то организм является гетерозиготным; в 1-м поколении потомков наблюдается расщепление признаков. Мужчины с кариотипом 46,XY являются гемизиготными по генам, локализованным на X-хромосоме.
2. Ген считается доминантным, если для проявления признака у гетерозиготного организма достаточно одного аллеля, и рецессивным, если для проявления признака требуются оба аллеля. Кодоминантность — совместное участие обоих аллелей в формировании признака у гетерозиготного организма. Примеры кодоминантности: взаимодействие аллелей групп крови AB0; наследование серповидноклеточной анемии. В последнем случае кодоминантными являются аллели S (аномальный гемоглобин) и A (нормальный гемоглобин); у гетерозигот SA болезнь в нормальных условиях не проявляется, у гомозигот SS развивается полная форма болезни. Таким образом, полная форма серповидноклеточной анемии — рецессивный признак.
3. Ген может локализоваться на аутосоме или на половых хромосомах. От локализации гена зависит тип наследования (аутосомный или сцепленный с полом). Практически все заболевания, сцепленные с полом, обусловлены дефектами генов, локализованных на X-хромосоме. Предполагают, что на Y-хромосоме (в Yp и проксимальной части Yq) может находиться 150—250 генов, хотя пока картированы лишь немногие из них.
Б. Аутосомно-доминантные болезни
1. Известно более 3700 таких болезней. Как правило, они обусловлены дефектами структурных белков или нарушениями регуляции экспрессии генов.
2. Эти болезни поражают мужчин и женщин с одинаковой частотой. Исключение составляют аутосомные дефекты, наследование которых зависит от пола. Так, синдромы Опица и Опица—Фриаса встречаются главным образом у мужчин и распознаются по наличию гипоспадии. Алопеция считается доминантным признаком, но проявляется преимущественно у мужчин (а у женщин наблюдается при нарушениях метаболизма стероидных гормонов, например при избытке тестостерона).
3. Для аутосомно-доминантных болезней характерен фенотипический полиморфизм (даже внутри одной семьи). Полиморфизм зависит от пенетрантности и экспрессивности аллеля. Пенетрантностью аллеля называют частоту его проявления в популяции. Экспрессивностью аллеля называют выраженность его проявления у одной особи. При полной пенетрантности аллеля признак наблюдается у всех особей популяции. При неполной пенетрантности признак наблюдается не у всех особей. Организм, несущий дефектный аллель с низкой экспрессивностью, может иметь нормальный фенотип. При неполной пенетрантности или низкой экспрессивности аллель «теряется» в одном или нескольких поколениях и может быть принят за новую мутацию при последующем проявлении.
4. Мутация доминантного гена в половых клетках проявляется, как правило, уже в первом поколении потомков. Поэтому вновь возникающие мутации считаются основной причиной аутосомно-доминантных болезней. Показано, что риск некоторых болезней этой группы повышен у детей пожилых отцов. Таким образом, возраст отца является фактором, предрасполагающим к возникновению мутаций доминантных генов.
5. Болезнь, обусловленная дефектом доминантного гена с нормальной экспрессивностью, обычно проявляется во всех поколениях одной семьи. Исключение составляют случаи, когда мутация доминантного гена летальна или существенно снижает фертильность (как за счет нарушения образования гамет, так и за счет снижения выживаемости плода). Вероятность наследования дефектного гена ребенком составляет:
а. 100%, если хотя бы один из родителей гомозиготен по доминантному гену.
б. 75%, если оба родителя гетерозиготны.
в. 50%, если один родитель гетерозиготен, а второй гомозиготен по рецессивному гену.
Наследование гена аутосомно-доминантной болезни не зависит от пола ребенка и тяжести болезни у родителя. Нельзя прогнозировать тяжесть болезни у ребенка по фенотипу родителя. У здоровых родителей, уже имеющих одного ребенка с аутосомно-доминантным заболеванием, повторный риск рождения ребенка с тем же заболеванием низок.
6. Гиперплазия и неоплазия эндокринных желез, подобно другим семейным опухолевым болезням, обычно наследуется аутосомно-доминантно. Примеры: синдромы МЭН типа I, IIa и IIb (см. гл. 44 и гл. 45); факоматоз; синдром Горлина—Гольца (базальноклеточный невус).
В. Аутосомно-рецессивные болезни. Известно более 1600 таких болезней. Поскольку экспрессия рецессивного аллеля в присутствии нормального аллеля невозможна, больные всегда являются гомозиготными по рецессивному аллелю. Если болезнь определяется экспрессией двух разных генов, детерминирующих один и тот же признак, больной может быть дигетерозиготен по двум рецессивным аллелям. Летальные рецессивные гены редко встречаются в природных популяциях.
1. Аутосомно-рецессивные болезни чаще всего обусловлены дефектами ферментов, реже — дефектами структурных белков. Именно поэтому многие врожденные нарушения обмена веществ попадают в эту группу болезней.
2. Эти болезни поражают мужчин и женщин с одинаковой частотой. Исключение составляют аутосомные дефекты, наследование которых зависит от пола.
3. Для рецессивных генов характерна полная пенетрантность и высокая экспрессивность. Фенотипический полиморфизм выражен в меньшей степени, чем при аутосомно-доминантном наследовании.
4. Проявление аутосомно-рецессивного заболевания у ребенка здоровых родителей может быть следствием вновь появившейся мутации рецессивного аллеля. Подтвердить это можно только путем молекулярно-генетического исследования хромосом родителей. Если такое исследование недоступно, оба родителя считаются гетерозиготами.
5. Болезнь, обусловленная рецессивным генетическим дефектом, может не проявляться во всех поколениях одной семьи (родители и дети пробанда часто здоровы). Вероятность аутосомно-рецессивной болезни у ребенка составляет:
а. 100%, если оба родителя гомозиготны по рецессивному гену;
б. 50%, если один родитель гомозиготен, а второй гетерозиготен по рецессивному гену;
в. 25%, если оба родителя гетерозиготны по рецессивному гену.
г. Повторный риск рождения больного ребенка у гетерозиготных родителей также составляет 25%. Носителями рецессивного аллеля являются примерно две трети здоровых детей таких родителей. Вероятность наличия у обоих родителей одного и того же рецессивного аллеля возрастает при браках между родственниками (особенно при кровнородственных браках). У супружеских пар, в которых один родитель с неизвестным генотипом здоров, а второй является гетерозиготой, риск рождения больного ребенка невелик. Однако риск значительно возрастает, если брак близкородственный или если мутантный рецессивный ген сильно распространен среди населения (например, в случае муковисцидоза или фенилкетонурии).
6. Большинство эндокринных болезней, связанных с дефицитом гормонов, врожденные нарушения метаболизма белков и синтеза гликогена, а также лизосомные болезни накопления наследуются аутосомно-рецессивно. Наследственные нарушения биосинтеза тиреоидных гормонов и различные формы врожденной гиперплазии коры надпочечников — примеры аутосомно-рецессивных болезней, при которых гиперплазия эндокринных желез развивается вторично (вследствие нарушения механизмов отрицательной обратной связи). Успешность лечения аутосомно-рецессивных болезней зависит от точности диагноза. Для многих болезней этой группы разработаны молекулярно-генетические пробы на гетерозиготность (носительство мутантных генов) и методы пренатальной диагностики.
Г. Болезни, сцепленные с полом, в подавляющем большинстве случаев обусловлены мутациями генов на X-хромосоме, поскольку Y-хромосома несет небольшое число генов. С Y-хромосомой сцеплены некоторые нарушения половой дифференцировки. На Yp1a локализуется ген SRY, кодирующий фактор развития яичка. Этот ген клонирован; он содержит 900 нуклеотидов и характеризуется высоким консерватизмом у разных млекопитающих. Мутации гена SRY изменяют генетический пол и нарушают формирование гонадного пола (см. гл. 19, п. I). Описано более 370 болезней, сцепленных (или предположительно сцепленных) с X-хромосомой. Тяжесть заболевания зависит от пола. Полные формы болезни проявляются преимущественно у мужчин, поскольку они гемизиготны по генам, локализованным на X-хромосоме. Если мутация затрагивает рецессивный сцепленный с X-хромосомой ген (XR-болезнь), то гетерозиготные женщины здоровы, но являются носительницами гена (а гомозиготы в большинстве случаев летальны). Если мутация затрагивает доминантный сцепленный с X-хромосомой ген (XD-болезнь), то у гетерозиготных женщин болезнь проявляется в легкой форме (а гомозиготы летальны). Важнейшее свойство болезней, сцепленных с X-хромосомой, — невозможность их передачи от отца к сыну (поскольку сын наследует Y-, а не X-хромосому отца).
1. Тяжесть XR-болезней меняется в широких пределах: от генетических леталей (например, мужское бесплодие при синдроме Леша—Найхана) до сравнительно легких нарушений (например, некоторые формы алопеции у мужчин). Генетические летали в одной трети случаев возникают в результате новой мутации, что осложняет медико-генетическое консультирование женщин, не имеющих в семейном анамнезе явных случаев заболевания. XR-болезнь может быть обусловлена рецессивным геном, летальным в гомозиготном или гемизиготном состоянии. Если локализация такого гена на X-хромосоме точно не доказана (цитогенетическими, биохимическими или молекулярно-биологическими методами), то XR-болезнь нельзя отличить от аутосомно-доминантной болезни, наследование которой зависит от пола. Например, тестикулярную феминизацию принято считать XR-болезнью, но ее сцепление с X-хромосомой не подтверждено.
В потомстве гетерозиготной женщины (носитель XR-дефекта) и здорового мужчины 50% дочерей — носительницы, а 50% сыновей — больные. У женщины с нормальным генотипом и фертильного мужчины с XR-болезнью все дочери — носительницы, а все сыновья здоровы. Примеры эндокринных XR-болезней: X-сцепленная адренолейкодистрофия (пероксисомное нарушение, для которого характерно чрезвычайное разнообразие клинических форм), врожденный идиопатический гипопитуитаризм, редкие формы нефрогенного несахарного диабета, редкие формы изолированного идиопатического гипопаратиреоза, врожденная гипоплазия надпочечников.
2. XD-болезни встречаются реже, чем XR-болезни, и часто приводят к гибели гемизиготных плодов мужского пола. Предполагают, что болезни, при которых повышена частота самопроизвольных абортов и снижена рождаемость мальчиков (например, синдром Франческетти—Ядассона и очаговая мезоэктодермальная дисплазия), обусловлены именно XD-дефектами. Гомозиготная женщина с нелетальным XD-дефектом передает XD-аллель всем детям; гетерозиготная женщина передает аллель половине детей обоего пола; гемизиготный мужчина передает аллель всем дочерям, но не сыновьям. Поэтому в семьях с нелетальными XD-дефектами преобладают больные женщины. Примеры эндокринных XD-болезней: нефрогенный несахарный диабет, некоторые варианты псевдогипопаратиреоза.
3. Для некоторых болезней, сцепленных с X-хромосомой, разработаны методы лечения и пренатальной диагностики, а также пробы на гетерозиготность (носительство мутантных генов). Если точно определить генетический дефект невозможно (например, из-за отсутствия необходимых молекулярных зондов), то пренатальная диагностика ограничивается определением пола будущего ребенка. Если это мальчик, а родители относятся к группе риска XR-болезни, то их предупреждают о том, что вероятность рождения больного мальчика равна 50%. Семья должна принять решение о прерывании или сохранении беременности.
VII. Полигенные болезни
А. В некоторых семьях встречаются болезни, наследование которых отличается от наследования хромосомных или моногенных болезней. Эти болезни называют полигенными, или мультифакториальными. Основные сведения о природе полигенных болезней были получены в популяционных исследованиях и с помощью близнецового метода. Оказалось, что конкордантность однояйцовых близнецов по проявлению полигенных болезней и семейный повторный риск таких болезней выше, чем следовало бы ожидать при их случайном распределении, но ниже, чем должно было бы быть при их менделевском наследовании (даже при условии неполной пенетрантности или низкой экспрессивности генетического дефекта). Разработана математическая модель порогового наследования, которая предсказывает, что два или более независимых гена (неаллельных и несцепленных) могут взаимодействовать неаддитивным образом, создавая генетическую основу (предрасположенность) для проявления определенного признака. Признак проявляется, когда взаимодействие предрасполагающего генотипа с факторами окружающей среды достигает некоторого порогового состояния. Хотя само проявление признака подчиняется закону «все или ничего», степень его проявления может меняться в широких пределах (из-за влияний других генетических факторов и факторов окружающей среды или тех и других вместе).
1. При полигенном наследовании часто наблюдается неравномерное распределение признака между полами.
2. Повторный риск полигенной болезни зависит от пола, тяжести болезни, степени генетической предрасположенности (различающейся в разных семьях), частоты болезни в данной семье, распространенности болезни среди населения.
Б. Доказано, что некоторые распространенные пороки развития — расщелина верхней губы, расщелина верхней губы в сочетании с расщелиной твердого неба, изолированная расщелина твердого неба, миеломенингоцеле в сочетании с анэнцефалией — имеют полигенную природу. Менее ясна этиология септооптической дисплазии, голопрозэнцефалии, синдрома каудальной дисплазии, а также дисгенезии щитовидной железы. Эти пороки обычно возникают спорадически (в семейном анамнезе нет указаний на какие-либо наследственные болезни); их повторный риск меньше, чем для полигенных пороков развития.
В. Известны полигенные болезни с высокой частотой встречаемости в отдельных семьях, в частности — аутоиммунные эндокринные болезни. В таких семьях необходимо детально обследовать ближайших родственников пробанда. Пример — аутоиммунные заболевания щитовидной железы. Маркерами аутоиммунного поражения тироцитов служат антитиреоидные аутоантитела. Они присутствуют в сыворотке больных с диффузным токсическим зобом или хроническим лимфоцитарным тиреоидитом, но могут выявляться и у родственников без клинических признаков болезни. Наличие аутоантител у здорового родственника свидетельствует о высоком риске болезни.
Г. Врожденные эндокринные болезни, обусловленные факторами внешней среды. Заражение женщины вирусом кори или краснухи в I триместре беременности значительно повышает риск гипопитуитаризма, изолированного дефицита СТГ, гипотиреоза и инсулинозависимого сахарного диабета у будущего ребенка. Прием гидантоинов (например, фенитоина) может вызвать нарушения половой дифференцировки у плода (недоразвитие наружных половых органов или наружные половые органы промежуточного типа). Воздействие гидантоинов, ретиноидов и алкоголя на плод часто приводит к пре- и постнатальной задержке роста.
Д. Врожденные болезни, обусловленные эндокринными факторами. Эндокринные и метаболические расстройства у беременных снижают жизнеспособность плода и вызывают пороки развития в эмбриональном и неонатальном периодах. К числу таких расстройств относятся гипопаратиреоз, гипотиреоз и тиреотоксикоз, гипо- и гиперфункция надпочечников. Инсулинозависимый сахарный диабет у беременной является причиной самопроизвольных абортов и существенно повышает риск больших пороков развития (наиболее часто встречаются дефекты развития сердца и ЦНС). На развитие плода и новорожденного влияют многие лекарственные средства, действующие на эндокринную систему, в том числе половые гормоны и антитиреоидные средства (йодиды, 131I, пропилтиоурацил, тиамазол).
VIII. Особые варианты наследования
А. Мозаицизм. Хромосомные аберрации и мутации одиночных генов могут локализоваться не во всех клетках организма, а только в отдельных клетках или клеточных популяциях. Если мутации возникают только в первичных половых клетках, говорят о гонадном мозаицизме. При гонадном мозаицизме у родителей менделевское наследование нарушается: не все потомки наследуют мутацию. Мутации в соматических клетках нередко случаются на ранних этапах эмбриогенеза. В таких случаях мутации могут локализоваться в тканях, происходящих из одного зародышевого листка, или в отдельных клонах клеток всех тканей организма. Формирование фенотипа у больных с мозаицизмом зависит от числа и распределения клонов клеток, несущих генетический дефект.
1. Инактивация X-хромосомы происходит на самых ранних стадиях эмбриогенеза и обеспечивает компенсацию дозы гена для большинства генов, локализованных на X-хромосоме. У женщин, гетерозиготных по аллелям X-хромосомы, имеет место «физиологический мозаицизм»: экспрессия всех генов, локализованных на X-хромосоме, характеризуется мозаичностью (исключая гены, не подвергшиеся инактивации).
2. Хромосомный мозаицизм очень часто встречается у больных с аномалиями половых хромосом. Как правило, клиническая картина при мозаицизме выражена не так ярко, как у лиц с полной формой болезни. Признаки хромосомного мозаицизма: асимметрия туловища или конечностей, неравномерная пигментация кожи. Эти признаки наиболее характерны для больных с мозаицизмом с X-аутосомными транслокациями. Для подтверждения диагноза мозаицизма исследуют культуры фибробластов больных. Мозаицизм у матери может влиять на развитие плода. Например, некоторые случаи внутриутробной задержки развития плода с нормальным кариотипом обусловлены частичным мозаицизмом плаценты.
3. У больных с мозаицизмом с мутацией одиночного гена может наблюдаться неоднородное распределение дефекта (пример — очаговый или сегментарный нейрофиброматоз). Если мутация доминантного гена происходит в одном из клонов первичных половых клеток родителей (гонадный мозаицизм), то она может проявиться у ребенка. Этим объясняются некоторые случаи рождения детей с моногенными болезнями от здоровых родителей.
Б. При однородительской дисомии обе гомологичные хромосомы происходят от одного родителя (т. е. хромосома другого родителя не наследуется). Возможный механизм дисомии — элиминация лишней хромосомы у плода с трисомией на ранних стадиях эмбриогенеза. Болезнь проявляется в том случае, если элиминируется лишняя хромосома, происходящая из нормальной гаметы.
1. Однородительская дисомия была описана при муковисцидозе, когда оба мутантных аллеля наследовались от одного родителя. В таких случаях дисомия имитирует аутосомно-рецессивное наследование.
2. У 20—30% больных с синдромом Прадера—Вилли, имеющих по данным цитогенетического исследования нормальный кариотип, с помощью молекулярно-биологических методов обнаруживается дисомия материнской 15-й хромосомы. Отцовская 15-я хромосома у таких больных отсутствует.
3. Предполагают, что однородительская дисомия является причиной внутриутробной задержки развития, умственной отсталости и микроцефалии. Эти предположения пока не подтверждены молекулярно-биологическими исследованиями.
В. Геномный импринтинг. Изменения одиночных генов или целых районов хромосом родителей при мейозе могут приводить к появлению гамет с генетическими дефектами. В таких случаях фенотипическое проявление дефекта у ребенка зависит от того, какая именно гамета участвует в образовании зиготы.
1. Характер проявления аутосомно-доминантных болезней зависит от происхождения дефектного аллеля. Например, ювенильная форма болезни Гентингтона наблюдается только у детей больных отцов, а наследственная атрофическая миотония — только у детей больных матерей.
2. Импринтинг наблюдается у многих больных с хромосомными делециями. При синдроме Прадера—Вилли всегда обнаруживается делеция отцовской 15-й хромосомы 15q11—13. Делеция этого же района материнской 15-й хромосомы обусловливает развитие синдрома Эйнджелмена (комплекс врожденных психических расстройств). Синдром Эйнджелмена легко отличим от синдрома Прадера—Вилли (см. гл. 4, п. V.А.4.а).
Г. Митохондриальное наследование. Дефекты мтДНК лежат в основе некоторых редких болезней. Частота таких болезней в разных популяциях различается; они поражают детей обоего пола, но всегда передаются через материнские гаметы. Примеры: наследственная атрофия зрительных нервов (синдром Лебера), митохондриальная энцефаломиопатия, сахарный диабет с митохондриальным наследованием.
Пренатальная диагностика
IX. Общие сведения. Современные методы пренатальной диагностики выявляют практически любые хромосомные аномалии и многие дефекты одиночных генов. Исследование ворсин хориона и амниоцентез на ранних сроках беременности позволяют получить клетки плода в конце I — начале II триместра. Эти исследования показаны при высоком риске передачи генетического дефекта, который может быть диагностирован цитогенетическим, биохимическим или молекулярно-биологическим методом. Для оценки развития плода (его морфологии и показателей роста) все шире применяют УЗИ. При амниоцентезе, проводимом под контролем УЗИ, риск тяжелых осложнений не превышает 0,5%. Риск осложнений при исследовании ворсин хориона и амниоцентезе на ранних сроках беременности не намного выше (если врач опытный).
X. Показания к амниоцентезу
Хотя каждое медицинское учреждение обычно разрабатывает собственную программу пренатальной диагностики, общепринятыми показаниями являются:
А. Возраст женщины і 35 лет.
Б. Беременность у женщины, уже имеющей ребенка с хромосомной болезнью.
В. Хотя бы один из родителей — носитель сбалансированной хромосомной перестройки.
Г. Хромосомная болезнь хотя бы у одного из родителей.
Д. В семейном анамнезе есть указания на нарушения мейоза.
Е. Оба родителя — гетерозиготы по аллелю аутосомно-рецессивной болезни, которую можно диагностировать цитогенетическим, биохимическим или молекулярно-биологическим методом.
Ж. У одного из родителей — аутосомно-доминантная болезнь, которую можно диагностировать указанными методами.
З. Мать — носитель гена сцепленной с X-хромосомой болезни, которую можно диагностировать цитогенетическим, биохимическим или молекулярно-биологическим методом.
И. Мать — носитель гена сцепленной с X-хромосомой болезни, которую нельзя диагностировать указанными методами. В этом случае необходимо определить пол плода.
К. Повторные самопроизвольные аборты (не менее трех случаев) или рождение ребенка с множественными врожденными аномалиями неизвестной природы (в тех случаях, когда нет времени на обследование родителей).
Л. В семейном анамнезе имеются указания на наличие дефектов нервной трубки.
М. В сыворотке беременной обнаружен неконъюгированный эстриол либо ненормальное содержание альфа-фетопротеина или бета-субъединицы ХГ.
Литература
1. Buyse ML. Birth Defects Encyclopedia. Cambridge: Blackwell, 1990.
2. Emery A, Rimoin D. Principles and Practice of Medical Genetics (2nd ed). New York: Churchill Livingstone, 1990.
3. Gorlin RJ, et al. Syndromes of the Head and Neck (3rd ed). New York: Oxford University Press, 1990.
4. Hall JG, et al. Handbook of Normal Physical Measurements. New York: Oxford University Press, 1989.
5. Jones KL. Smith's Recognizable Patterns of Human Malformation (4th ed). In M Markowitz (ed.), Major Problems in Clinical Pediatrics (vol VII). Philadelphia: Saunders, 1988.
6. McKusick V. Mendelian Inheritance in Man (10th ed.). Baltimore: Johns Hopkins University Press, 1992.
7. Rimoin DL. Disorders of the Endocrine Glands. In AA Dietz (ed.), Genetic Disease: Diagnosis and Treatment. Proceedings of the Fifth Arnold O. Beckman Conference in Clinical Chemistry. Monterey, CA: The Association for Clinical Chemistry, 1983.
8. Taybi H, Lachman RS. Radiology of Syndromes, Metabolic Disorders, and Skeletal Dysplasias (3rd ed). Chicago: Yearbook, 1990.
9. Vogel F, Motulsky AG. Human Genetics: Problems and Approaches (2nd ed). New York: Springer, 1986.
10. Wiedmann H-R, et al. Atlas of Clinical Syndromes—A Visual Aid to Diagnosis (2nd ed). St. Louis: Mosby, 1989.
11. Wynne-Davis R, Hall CM, Apley AG. Atlas of Skeletal Dysplasias. Edinburgh: Churchill Livingstone, 1985.